A Note on a Fundamental Domain for Siegel-jacobi Space

نویسنده

  • JAE-HYUN YANG
چکیده

In this paper, we study a fundamental domain for the Siegel-Jacobi space Sp(g,Z)⋉H (g,h) Z \Hg × C .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Invariant Differential Operators on Siegel-jacobi Space

For two positive integers m and n, we let Hn be the Siegel upper half plane of degree n and let C be the set of all m × n complex matrices. In this article, we investigate differential operators on the Siegel-Jacobi space Hn ×C(m,n) that are invariant under the natural action of the Jacobi group Sp(n,R)⋉ H (n,m) R on Hn × C, where H R denotes the Heisenberg group.

متن کامل

A Partial Cayley Transform of Siegel-jacobi Disk

Let Hg and Dg be the Siegel upper half plane and the generalized unit disk of degree g respectively. Let C be the Euclidean space of all h× g complex matrices. We present a partial Cayley transform of the Siegel-Jacobi disk Dg × C (h,g) onto the Siegel-Jacobi space Hg × C (h,g) which gives a partial bounded realization of Hg × C (h,g) by Dg ×C . We prove that the natural actions of the Jacobi g...

متن کامل

Admissible Wavelets on the Siegel Domain of Type One

Let Sp(n,R) be the symplectic group, and K∗ n its maximal compact subgroup. Then G = Sp(n,R)/K∗ n can be realized as the Siegel domain of type one. The square-integrable representation of G gives the admissible wavelets AW and wavelet transform. The characterization of admissibility condition in terms of the Fourier transform is given. The Bergman kernel follows from the viewpoint of coherent s...

متن کامل

Explicit Matrices for Hecke Operators on Siegel Modular Forms

We present an explicit set of matrices giving the action of the Hecke operators T (p), Tj(p ) on Siegel modular forms. Introduction It is well-known that the space of elliptic modular forms of weight k has a basis of simultaneous eigenforms for the Hecke operators, and the Fourier coefficients of an eigenform (and hence the eigenform) are completely determined by its eigenvalues and first Fouri...

متن کامل

2 4 A ug 2 00 6 INVARIANT METRICS AND LAPLACIANS ON SIEGEL - JACOBI SPACE

In this paper, we compute Riemannian metrics on the Siegel-Jacobi space which are invariant under the natural action of the Jacobi group explicitly and also provide the Laplacians of these invariant metrics. These are expressed in terms of the trace form.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006